Proof:

$$
\begin{aligned}
\nabla \cdot(\mathbf{F} \wedge \mathbf{G}) & =\sum\left\{\mathbf{i} \cdot \frac{\partial}{\partial x}(\mathbf{F} \wedge \mathbf{G})\right\} \\
& =\sum\left\{\mathbf{i} \cdot\left[\mathbf{F} \wedge \frac{\partial \mathbf{G}}{\partial x}+\frac{\partial \mathbf{F}}{\partial x} \wedge \mathbf{G}\right]\right\} \\
& =\sum\left[\mathbf{i}, \mathbf{F}, \frac{\partial \mathbf{G}}{\partial x}\right]+\sum\left[\mathbf{i}, \frac{\partial \mathbf{F}}{\partial x}, \mathbf{G}\right] \\
& =-\sum\left[\mathbf{F}, \mathbf{i}, \frac{\partial \mathbf{G}}{\partial x}\right]+\sum\left[\left(\mathbf{i} \wedge \frac{\partial \mathbf{F}}{\partial x}\right) \cdot \mathbf{G}\right] \\
& =-\mathbf{F} \cdot \sum\left(\mathbf{i} \wedge \frac{\partial \mathbf{G}}{\partial x}\right)+\left\{\sum\left(\mathbf{i} \wedge \frac{\partial \mathbf{F}}{\partial x}\right)\right\} \cdot \mathbf{G} \\
& =-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}+\mathbf{G} \cdot \operatorname{curl} \mathbf{F} .
\end{aligned}
$$

(v) $\operatorname{curl}(\mathbf{F} \wedge \mathbf{G}) \equiv(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}+\mathbf{F} \operatorname{div} \mathbf{G}-\mathbf{G} \operatorname{div} \mathbf{F}$.

Proof:

$$
\begin{aligned}
\nabla \wedge(\mathbf{F} \wedge \mathbf{G}) & =\sum\left\{\mathbf{i} \wedge \frac{\partial}{\partial x}(\mathbf{F} \wedge \mathbf{G})\right\} \\
& =\sum\left\{\mathbf{i} \wedge\left(\mathbf{F} \wedge \frac{\partial \mathbf{G}}{\partial x}+\frac{\partial \mathbf{F}}{\partial x} \wedge \mathbf{G}\right)\right\} \\
& =\sum\left\{\mathbf{i} \wedge\left(\mathbf{F} \wedge \frac{\partial \mathbf{G}}{\partial x}\right)\right\}+\sum\left\{\mathbf{i} \wedge\left(\frac{\partial \mathbf{F}}{\partial x} \wedge \mathbf{G}\right)\right\} \\
& =\sum\left\{\left(\mathbf{i} \cdot \frac{\partial \mathbf{G}}{\partial x}\right) \mathbf{F}-(\mathbf{i} \cdot \mathbf{F}) \frac{\partial \mathbf{G}}{\partial x}\right\}+\sum\left((\mathbf{i} \cdot \mathbf{G}) \frac{\partial \mathbf{F}}{\partial x}\right. \\
& =\left(\sum \mathbf{i} \cdot \frac{\partial \mathbf{G}}{\partial x}\right) \mathbf{F}-\mathbf{F} \cdot\left(\sum \mathbf{i} \frac{\partial}{\partial x}\right) \mathbf{G}+\mathbf{G} \cdot\left(\sum \mathbf{i} \frac{\partial}{\partial x}\right) \mathbf{F} \\
& \left.=\left(\nabla \cdot \mathbf{i} \cdot \frac{\partial \mathbf{F}}{\partial x}\right) \mathbf{G}\right\} \\
& =(\mathbf{F} \cdot \nabla) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G} .
\end{aligned}
$$

(N.B. In this example naïve application of the vector product rule would give the wrong result:
sometimes convenient to work with other systems of orthogonal coordinates. The two most common are those afforded by cylindrical polar coordinates and spherical polar coordinates.

Fig. 1.24
Figure 1.24 shows a point P in a Cartesian tri-rectangular frame specified by axes $O X, O Y, O Z . P M$ is drawn perpendicularly to the coordinate plane $X O Y$. Let $X O M=\theta, O M=\mathrm{R}, P M=z$. Then (R, θ, z) are called the cylindrical polar coordinates of P. Knowledge of these elements clearly enables P to be determined uniquely. The three surfaces through P

$$
R=\text { const., } \theta==\text { const., } z=\text { const. }
$$

are respectively (i) the right circular cylinder through P, axis $O X$ and radius R; (ii) the plane through $O Z$ set at angle θ to the coordinate plane $Z O X$; (iii) the plane through P parallel to the coordinate plane $X O Y$ and distant z from it. Clearly these three surfaces intersect mutually orthogonally, so that the system of coordinates is an orthogonal one. We observe that if (x, y, z) are the Cartesian coordinates of P, then

$$
\begin{aligned}
x & =R \cos \theta, \quad y=R \sin \theta, \quad z=z ; \\
R & =\sqrt{ }\left(x^{2}+y^{2}\right), \quad \theta=\tan ^{-1}(y / x), \quad z=z .
\end{aligned}
$$

The first system of equations expresses the Cartesian coordinates in terms of the cylindrical polars: the second system gives the cylindrical polar coordinates in terms of the Cartesians.

In Fig. 1.25, P is the point chosen in a Cartesian tri-rectangular frame of axes $O X, O Y, O Z$, such that $O P=r, \angle Z O P=\theta, \varphi=$ angle between planes $Z O X, Z O P$. Then (r, θ, φ) are called the spherical polar coordinates of P. Knowledge of these elements clearly enables P to be determined uniquely. The three surfaces through P

$$
r=\text { const., } \theta=\text { const., } \varphi=\text { const. }
$$

ρ being a scalar field and c a constant. Assuming that $\mathbf{E}, \mathbf{H}, \mathrm{v}$ and ρ are at least twice differentiable functions of x, y, z and t, establish the following equations:

$$
\begin{aligned}
\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} & =\nabla \rho+\frac{1}{c^{2}} \frac{\partial}{\partial t}(\rho \mathbf{v}), \\
\nabla^{2} \mathbf{H}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{H}}{\partial t^{2}} & =-\frac{1}{c} \nabla \wedge(\rho \mathbf{v}) \\
\nabla \cdot(\rho \mathbf{v})+\frac{\partial \rho}{\partial t} & =0 .
\end{aligned}
$$

(London Univ., Gen. B.Sc. II, 1963)
15. (i) Show that

$$
\operatorname{div}(\mathbf{u} \wedge \mathbf{v})=\mathbf{v} \cdot \operatorname{curl} \mathbf{u}-\mathbf{u} \cdot \operatorname{curl} \mathbf{v}
$$

for any two vector fields \mathbf{u} and \mathbf{v}.
If curl $\mathbf{a}=\mathbf{b}$, and curl $\mathbf{b}=\mathbf{a}$, show that
(a) div (curl $\mathbf{a} \wedge \operatorname{curl} \mathbf{b})=\mathbf{a}^{2}-\mathbf{b}^{2}$,
(b) $\nabla^{2} \mathbf{a}+\mathbf{a}=0, \nabla^{2} b+b=0$.
(ii) If θ, φ, ψ are suitable functions of position, prove that

$$
\begin{aligned}
\int_{V}(\psi \nabla \theta \cdot \nabla \varphi) d V & =\int_{S}(\varphi \psi \nabla \theta) \cdot d \mathbf{S}-\int_{V}\{\varphi \nabla \cdot(\psi \nabla \theta)\} d V \\
& =\int_{S}(\theta \psi \nabla \varphi) \cdot d \mathbf{S}-\int_{V}\{\theta \nabla \cdot(\psi \nabla \varphi)\} d V
\end{aligned}
$$

where S is a simple closed surface bounding a volume V.
(Battersea College of Technology, Dip. Tech. I, 1964)
16. Using Green's theorem that

$$
\iint_{S}\left(U \frac{\partial V}{\partial n}-V \frac{\partial U}{\partial n}\right) d S=\iiint_{\tau}\left(U \nabla^{2} V-V \nabla^{2} U\right) d \tau
$$

show that, if P is any point of a volume τ bounded by a surface S,

$$
4 \pi V_{P}=\iint_{S}\left[\frac{1}{R} \frac{\partial V}{\partial n}-V \frac{\partial}{\partial n}\left(\frac{1}{R}\right)\right] d S-\iiint_{\tau} \frac{1}{R} \nabla^{2} V d \tau
$$

where V is a scalar function of position satisfying conditions which should be stated, V_{P} is the value of V at P, and R is the distance from P to a variable point of c. Hence (i) show that

$$
4 \pi=-\iint_{S} \frac{\partial}{\partial \eta}\left(\frac{1}{R}\right) d S
$$

so comparing this with $\partial \varphi / \partial y=-k^{2} x /\left(x^{2}+y^{2}\right)$, we see that

$$
f^{\prime}(y)=0
$$

or

$$
f(y)=\text { const. }
$$

As the constant is immaterial, we may take

$$
\varphi(x, y)=k^{2} \tan ^{-1}(x / y) .
$$

The equipotentials are thus given by the planes

$$
x=c y .
$$

through the z-axis. They are appropriately intersected orthogonally by the streamlines. Figure 2.6 shows the streamlines and equipotentials.

Fig. 2.6

Example 2

For an incompressible fluid, $\mathbf{q}=[-\omega y, \omega x, 0]$ ($\omega=$ const.). Discuss the nature of the flow.

We find $\nabla \cdot \mathbf{q}=0$, so that such a flow is possible.
Further,

$$
\nabla \wedge \mathbf{q}=\left\|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-\omega y & \omega x & 0
\end{array}\right\|=2 \omega \mathbf{k} .
$$

Thus the flow is not of the potential kind. It can easily be shown that a rigid body rotating about the z-axis with constant vector angular velocity $\omega \mathbf{k}$ gives the same type of motion. (For the velocity at (x, y, z) in the body is $-\omega y \mathbf{i}+\omega x \mathbf{j}$.)

CONTENTS

Preface v
Sources of Examination Questions vii
Key to Abbreviations vii

1. Vector Analysis 1
1.1 Vectors and Scalars 1
1.2 Addition and Subtraction of Vectors 2
1.3 Use of Coordinates 4
1.4 Scalar Product of Two Vectors 5
1.5 Vector Product of Two Vectors 7
1.6 Triple Products 9
1.7 Vector Moment about a Point and Scalar Moment about an Axis 10
1.8 Vector and Scalar Couples 11
1.9 Centroids 12
1.10 Differentiation of Vectors w.r.t. Scalars 13
1.11 Notion of Scalar and Vector Fields 14
1.12 The Vector Gradient and Direction Differentiator 15
1.13 Normal Flux of a Vector nver a Surface; Divergence of a Vector 20
1.14 Line Integrals; Curl of a Vector Function 24
1.15 Some Vector Identities 27
1.16 Relations between Surface and Volume Integrals 32
1.16.1 Cartesian Form of Divergence Theorem 34
1.16.2 Some Theorems due to Green 36
1.16.3 Some Worked Examples 38
1.17 Relations between Line and Surface Integrals 40
xCONTENTS
1.18 Conservative Vector Fields 42
1.18.1 Conservative Fields of Force 45
1.19 General Orthogonal Curvilinear Coordinates 46
1.19.1 Arc Length in Orthogonal Coordinates 48
1.19.2 Gradient in Orthogonal Coordinates 51
1.19.3 Divergence in Orthogonal Coordinates 52
1.19.4 Laplacian in Orthogonal Coordinates 53
1.19.5 Curl of a Vector Function in Orthogonal Coordinates 53
1.19.6 Worked Examples 55
1.20 Some Cartesian Tensor Notation 58
Exercise 1 62
2. Kinematics of Fluids in Motion 70
2.1 Real Fluids and Ideal Fluids 70
2.2 Velocity of a Fluid at a Point 71
2.3 Streamlines and Pathlines; Steady and Unsteady Flows 72
2.4 The Velocity Potential 73
2.5 The Vorticity Vector 75
2.6 Local and Particle Rates of Change 76
2.7 The Equation of Continuity 77
2.8 Worked Examples 79
2.9 Acceleration of a Fluid 84
2.10 Conditions at a Rigid Boundary 85
2.11 General Analysis of Fluid Motion 86
Exercise 2 90
3. Equations of Motion of a Fluid 92
3.1 Pressure at a Point in a Fluid at Rest 92
3.2 Pressure at a Point in a Moving Fluid 93
3.3 Conditions at a Boundary of Two Inviscid Immiscible Fluids 95
3.4 Euler's Equations of Motion 96
3.5 Bernoulli's Equation 99
3.6 Worked Examples 100
3.7 Discussion of the Case of Steady Motion under Conservative Body Forces 103
3.8 Some Potential Theorems 104
3.9 Some Flows Involving Axial Symmetry 110
3.10 Some Special Two-Dimensional Flows 120
3.11 Impulsive Motion 121
3.12 Some Further Aspects of Vortex Motion 124
Exercise 3 130
4. Some Three-Dimensional Flows 136
4.1 Introduction 136
4.2 Sources, Sinks and Doublets 136
4.3 Images in a Rigid Infinite Plane 144
4.4 Images in Solid Spheres 147
4.5 Axi-Symmetric Flows; Stokes's Stream Function 150
4.5.1 Some Special Forms of the Stream Function for Axi- Symmetric Irrotational Motions 153
Exercise 4 158
5. Some Two-Dimensional Flows 160
5.1 Meaning of Two-Dimensional Flow 160
5.2 Use of Cylindrical Polar Coordinates 160
5.3 The Stream Function 165
5.4 The Complex Potential for Two-Dimensional, Irrotational, Incompressible Flow 167
5.5 Complex Velocity Potentials for Standard Two-Dimensional Flows 170
5.5.1 Uniform Stream 170
5.5.2 Line Sources and Line Sinks 170
5.5.3 Line Doublets 172
5.5.4 Line Vortices 174
5.6 Some Worked Examples 175
5.7 Two-Dimensional Image Systems 178
5.8 The Milne-Thomson Circle Theorem 181
5.8.1 Some Applications of the Circle Theorem 183
5.8.2 Extension of the Circle Theorem 187
15.9 The Theorem of Blasius 189
5.10 The Use of Conformal Transformation 193
5.10.1 Some Hydrodynamical Aspects of Conformal Trans- formation 194
5.10.2 Some Worked Examples 197
5.11 The Schwarz-Christoffel Transformation 202
5.12 Vortex Rows 207
5.12.1 Single Infinite Row of Line Vortices 207
5.12.2 The Kármán Vortex Street 208
Exercise 5 20 C
6. Elements of Thermodynamics 218
6.1 The Equation of State of a Substance 218
6.2 The First Law of Thermodynamics 219
6.3 Internal Energy of a Gas 220
6.4 Specific Heats of a Gas 221
6.5 Functions of State; Entropy 223
6.6 Maxwell's Thermodynamic Relations 224
6.7 Isothermal, Adiabatic and Isentropic Processes 229
6.8 Heat Engines, Cycle of Changes, Reversibility 230
6.9 The Carnot Cycle 231
6.10 The Second Law of Thermodynamics 234
6.11 Carnot's Theorem 235
Exercise 6 239
7. Gas Dynamics 242
7.1 Compressibility Effects in Real Fluids 242
7.2 The Elements of Wave Motion 242
7.2.1 The One-Dimensional Wave Equation 243
7.2.2 Wave Equations in Two and in Thiee Dimensions 245
7.2.3 Spherical Waves 246
7.2.4 Progressive and Stationary Waves 246
7.3 The Speed of Sound in a Gas 248
7.4 Equations of Motion of a Gas 249
7.5 Subsonic, Sonic and Supersonic Flows 250
7.6 Isentropic Gas Flow 253
7.7 Reservoir Discharge through a Channel of Varying Section 255
7.7.1 Investigation of Maximum Mass Flow through a Nozzle 257
7.7.2 Nozzle with Different Mass Flows 260
7.8 Shock Waves 264
7.8.1 Formation of Shock Waves 264
7.8.2 Elementary Analysis of Normal Shock Waves 268
7.8.3 Elementary Analysis of Oblique Shock Waves 276
7.8.4 Formation of Reflected Oblique Shocks 281
7.8.5 Use of Shock Charts 2.83
Chart A Facing 282
Chart B Facing 284
7.9 The Method of Characteristics applied to Supersonic Homentropic Irrotational Gas Flows 287
7.9.1 The Method of Characteristics for Two-Dimensional, Homentropic, Irrotational Flow 287
7.9.2 Use of Hodograph Characteristics: Flow along a Convex Wall 294
7.9.3 Use of Characteristic Coordinates 295
7.9.4 Flow Round a Sharp Convex Corner: Prandtl-Meyer Expansion 298
7.9.5 Axially-Symmetric Flows in Three Dimensions 303
Exercise 7 305
8. Viscous Flow 310
8.1 Stress Components in a Real Fluid 310
8.2 Relations between Cartesian Components of Stress 311
8.3 Translational Motion of Fluid Element 314
CONTENTSxiii
8.4 The Rate of Strain Quadric and Principal Stresses 315
8.5 Some Further Properties of the Rate of Strain Quadric 316
8.6 Stress Analysis in Fluid Motion 318
8.7 Relations between Stress and Rate of Strain 319
8.8 The Coefficient of Viscosity and Laminar Flow 322
8.9 The Navier-Stokes Equations of Motion of a Viscous Fluid 323
8.10 Some Solvable Problems in Viscous Flow 325
8.10.1 Steady Motion between Parallel Planes 325
8.10.2 Steady Flow through Tube of Uniform Circular Cross-Section 328
8.10.3 Steady Flow between Concentric Rotating Cylinders 330
8.11 Steady Viscous Flow in Tubes of Uniform Cross-Section 332
8.11.1 A Uniqueness Theorem 333
8.11.2 Tube having Uniform Elliptic Cross-Section 334
8.11.3 Tube having Equilateral Triangular Cross-Section 335
8.11.4 Use of Harmonic Functions 336
8.12 Diffusion of Vorticity 338
8.13 Energy Dissipation due to Viscosity 339
8.14 Steady Flow past a Fixed Sphere 340
8.15 Dimensional Analysis; Reynolds Number 343
8.16 Prandtl's Boundary Layet $34!$
8.16.1 Kármán's Integral Equation 348
Exercise 8 349
. Magnetohydrodynamics 354
9.1 Nature of Magnetohydrodynamics 354
9.2 Maxwell's Electromagnetic Field Equations: Medium at Rest 355
9.3 Maxwell's Electromagnetic Field Equations: Medium in Motion 356
9.4 The Equations of Motion of a Conducting Fluid 358
9.5 Rate of Flow of Charge 359
9.6 Simplification of the Electromagnetic Field Equations 360
9.7 The Magnetic Reynolds Number 361
9.8 Alfvén's Theorem 362
9.9 'The Magnetic Body Force 364
9.10 Ferraro's Law of Isorotation 366
9.11 Magnetohydrostatics 368
9.11.1 Pinch Confinement of a Plasma 369
9.11.2 Equilibrium of Sunspots 370
9.12 Magnetohydrodynamic Waves 371
9.12.1 A More Detailed Investigation of Alfvén Waves 373
9.12.2 Reflection and Transmission of Alfvén Waves at a Discontinuity in Density $\$ 76$
xiv CONTENTS
9.13 Magnetohydrodynamic Shock Waves 377
9.13.1 Shock Wave in Non-Conducting Gas with Finite Viscosity and Thermal Conductivity 377
9.13.2 MHD Effects in Shock Formation 380
9.14 Laminar Flow of a Viscous Conducting Liquid between Parallel Walls in a Transverse Magnetic Field 382
Exercise 9 386
Appendix Characteristics of Second Order Partial Differential rquations 389
Solutions 393
Index 397
