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Proof:

VECTOR ANALYSIS

Ii' · (F A G) = ,L{i · ~ (F A G) }

=,L{i. [FA °O~ +~~ AG]}

=2:[i,F, ~~] +2:[i, ~:,G]

=-,L [F, i, ~~] +,L[(i A~~) ·G]

=-F· ,L(iA ~~) +{,L(iA ~~)} ·G
= -F · curl G+G · curl F.

(v) curl (F AG)=(G· (7)F-(F· (7)G+F div G-G div F.

Proof:

Ii'A(F AG)=2:{iA~ (F AG)}

~{. ( oG of )'}=L lA FAa;+a;AG

=,L{iA(FA °O~)}+ ,L{iA(:: AG)}

=2:{(i ·~~)F -(i ·F) :~} +,L(i ·G) ~~

-(i. ~~)G}

=(,Li. ~~)F-F. (,Li~)G+G. (,Li~)F

-(2:i. ~~)G
=(17· G)F-(F· (7)G+(G ·(7)F-(17· F)G.

(N.B. In this example naive application of the vector product rule would
give the wrong result:
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sometimes convenient to work with other systems of orthogonal co-
ordinates. The two lnost COlnmon are those afforded by cylindrical polar
coordinates and spherical polar coordinates.

z

P(R,9,z)

z

'.M.--------+-----y

R

x
FIG. 1.24

M

Figure 1.24 shows a point P in a Cartesian tri-rectangular frame specified
by axes OX, OY, OZ. PM is drawn perpendicularly to the coordinate plane
XOY. Let XOM =8, OM =R, PM=Z. Then (R, 8, z) are called the cylin-
drical polar coordinates of P. Knowledge of these elements clearly enables
P to be determined uniquely. The three surfaces through P

R=const., 8=;.:const., z=const.

are respectively (i) the right circular cylinder through P, axis OX and
radius R; (ii) the plane through 0 Z set at angle 8 to the coordinate plane
ZOX; (iii) the plane through P parallel to the coordinate plane XO Y and
distant z from it. Clearly these· three surfaces intersect mutually ortho-
gonally, so that the system of coordinates is an orthogonal one. We observe
that if (x, y, z) are the Cartesian coordinates of P, then

x=R cos 8, y=R sin 8, z=z;
R=y(x2+y2), 8=tan-1(y/x), Z=Z.

The first system of equations expresses the Cartesian coordinates in terms
of the cylindrical polars: the second system gives the cylindrical polar
coordinates in terms of the Cartesians.

In Fig. 1.25, P is the point chosen in a Cartesian tri-rectangular frame
of axes OX, OY, OZ, such that OP=r, LZOP=O, tp=angle between
planes ZOX, ZOP. Then (r,8, tp) are called the spherical polar co-
ordinates of P. Knowledge of these elements clearly enables P to be
determined uniquely. The three surfaces through P

r - const., e= const., tp = canst.
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p being a scalar field and c a constant. Assuming that E, H, v and p are at
least twice differentiable functions of x, y, z and t, establish the following
equations:

1 82E 1 8
r 2E---=rp+--(pv)

c2 8t2 c2 8t '

1 828 1
1728-- -= --17 A (pV),

c2 8t2 C

8pr· (pv) +8t =0.

(London Univ., Gen. B.Sc. II, 1963)
15. (i) Show that

div(uAv)=V· curl u-u· curl v

for any two vector fields u and v.
,If curl a=b, and curl b=a, show that
(a) div (curl a 1\ curl b) = a2 - b2,

(b) 172a +a=O, 172b +b=O.
(ii) If 0, qJ, VI are suitable functions of position, prove that

Iv("'VO · P'rp) dV= !s(rp",VO) •dS - Iv {rpv • (",VO) }dV

=Is(O",vrp) •dS - Iv{ov • (",Vrp)} dV,

where S is a simple closed surface bounding a volume V.
(Battersea College of Technology, Dip. Tech. I, 1964)

16. Using Green's theorem that

show that, if P is any point of a volume 't' bounded by a surface S,

where V is a scalar function of position satisfying conditions which should
be stated, V p is the value of V at P, and R is the distance from P to a
variable point of c. Hence (i) show that
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50 comparing this with 8rpl8y = - k2xl(x2 + y2), we see that

j'(y) =0
or

f(y) = const.

As the constant is immaterial, we may take

rp(x, y) =k2 tan- 1 (xly).

The equipotentials are thus given by the planes

81

x=cy.

through the z-axis. They are appropriately intersected orthogonally by the
streamlines. Figure 2.6 shows the streamlines and equipotentials.
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FIG. 2.6

--streamline

._--_.. equipotential

EXAMPLE 2
l·~or an incompressible fluid, q = [ - wy, wx, 0] (w = const.). Discuss the

nature of the flow.
We find r · q = 0, so that such a flo,v is possible.
Further,

880

r "q = ox oy oz = 2wk.

- wy wx 0

Thus the flow is not of the potential kind. It can easily be shown that a
rigid body rotating about the z-axis with constant vector angular velocity
wk gives the same type of motion. (For the velocity at (x, y, z) in the body
is - wyi +wxj.)
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