Contents

1. Some Mathematical Preliminaries and Convex Sets 1-38
1.1 Introduction 1
1.2 Matrix 1
1.3 Type of Matrices 1
1.4 Operation on Matrices 3
1.5 Properties of Matrix Addition 5
1.6 Properties of Multiplication of Matrix by a scalar 6
1.7 Multiplication of Matrices 7
1.8 Determinant of a Square Matrix 8
1.9 Properties of Determinants 8
1.10 Evolution of a Determinant by Sarrus diagram 9
1.11 Minors and Cofactors 9
1.12 Singular and Non-Singular Matrix 10
1.13 Transpose of a Matrix 10
1.14 Properties of Transpose of a Matrix 11
1.15 Symmetric Matrix 12
1.16 Skew-symmetric Matrix 12
1.17 Rank of a Matrix 12
1.18 Echelon form of a Matrix 13
1.19 Inverse of a Matrix 14
1.20 Convex Set 17
1.21 Some Related Definitions 17
1.22 Convex Hull 19
1.23 Convex Function and Convex Polyhedron 19
1.24 Feasible and Basic Feasible Solutions 30
2. Linear Programming Problems: Formulation and Graphical solutions 39-94
2.1 Introduction 39
2.2 Basic Terminology of Linear Programming 39
2.3 Basic Requirements of LPP 40
2.4 Basic Assumptions of LP model 40
2.5 Advantage of Linear Programming 40
2.6 Limitations of Linear Programming 41
2.7 Application areas of Linear Programming 41
2.8 Standard form of Linear Programming Problems 42
2.9 Matrix form of LPP 43
2.10 Mathematical Formulation of Linear Programming Problem 43
2.11 Extra Variable needed 44
2.12 Solution of Linear Programming Problem 53
2.13 Graphical solution methods of an LPP 54
3. Simplex Method 95-160
3.1 Introduction 95
3.2 Terminology and Notations 95

3.3 Fundamental Theorem of Linear Programming	96
3.4 Reduction of Feasible Solution to Basic Feasible Solution	98
3.5 To find the Improved Basic Feasible Solution (BFS) from a given BFS	110
3.6 Conditions for the Existence of Unbounded Solutions	112
3.7 Condition for Improved Basic Feasible Solution to become Optimal	113
3.8 Alternative optimal solutions	114
3.9 Inconsistency and Redundancy	114
3.10 Procedure to obtain Initial Basic Feasible Solution	114
3.11 Simplex Algorithm	116
3.12 Simplex Method: Case of minimization	130
3.13 Artificial Variable Technique	130
3.14 Two Phase Method	139
3.15 Some special Linear Programming Problems	144
3.16 Solution of Simultaneous Linear Equations by Simplex Method	153
3.17 Inverse of a Matrix by Simplex Method	155
4. Degeneracy in Linear Programming	161-174
4.1 Introduction	161
4.2 Degeneracy in Linear Programming	161
4.3 The necessary and Sufficient Condition for the	161
Existence of Non-Degeneracy	
4.4 Occurance of Degeneracy in Linear Programming	161
4.5 Resolution of Degeneracy	161
5. Revised Simplex Method	175-216
5.1 Introduction	175
5.2 Standard Form of Revised Simplex Method	175
5.3 Revised Simplex method for Standard form-I	175
5.4 Revised Simplex method for Standard form-II	193
5.5 Comparison of Simplex Method and Revised Simplex Method	213
6. Duality in Linear Programming	271-252
6.1 Introduction	217
6.2 Relationship Between Prime and Dual	217
6.3 Symmetric Primal-Dual Problems	218
6.4 Dual of an LPP with Mixed Restrictions	220
6.5 Some Results on Duality	231
7. Dual Simplex Method and Primal-Dual Algorithm	253-272
7.1 Introduction	253
7.2 Dual-Simplex Algorithm	253
7.3 Primal-Dual Algorithm	262
7.4 Steps of Primal-Dual Algorithm	266
8. Sensitivity Analysis	273-304
8.1 Introduction	273
8.2 Change in the Objective Function Coefficients (price vectors), c_{j}	273
8.3 Variation in the Requirement Vector, b_{i}	282

8.4 Variation in the Elements a_{ij} of the Coefficient Matrix A 289
8.5 Addition of a New Variable 292
8.6 Addition of a New Constraint 292
9. Parametric Linear Programming 305-332
9.1 Introduction 305
9.2 Parametric Programming 305
9.3 Systematic Variation in the Objective function Coefficients, c_{j} 305
9.4 Systematic Linear variation in b_{i} 323
10. Integer Programming 333-364
10.1 Introduction 333
10.2 Need of Integer Linear Programming 333
10.3 Types of Integer Linear Programming Problems 333
10.4 Methods to solve an Integer Linear Programming Problem 334
10.5 Problem on Mixed Integer Linear Programming 348
10.6 The Branch and Bound technique 354
11. The Transportation Problem 365-424
11.1 Introduction 365
11.2 Mathematical Formulation of Transportation Problem 365
11.3 Solution of the Transportation Problem 369
11.4 Test for Optimality 385
11.5 Degeneracy in Transportation Problems 398
11.6 Unbalanced Transportation Problem 405
11.7 Some Miscellaneous Solved Problems 408
12. Assignment Problems 425-466
12.1 Introduction 425
12.2 Mathematical Representation of Assignment Problem 425
12.3 Difference between Transportation and Assignment Problem 426
12.4 Theorems on Assignment Problem 426
12.5 Solution of Assignment Problem : Hungarian Method 427
12.6 The Maximal Assignment Problem 438
12.7 Unbalanced Assignment Problem 439
12.8 Some Miscellaneous Solved Examples 442
12.9 Travelling Salesman Problem 455
13. Goal Programming 467-506
13.1 Introduction 467
13.2 Concepts of Goal Programming 467
13.3 Goal Programming Model Formulation 467
13.4 General form of Goal Programming Problem 473
13.5 Method of Solution of a GP Problem 474
Bibliography 507

